若∠α是锐角,sinαcosα=p,求sinα+cosα的值

2025-06-22 06:12:36
推荐回答(1个)
回答1:

解:令y=(sinα)^2cosα,得:
2y^2=2(sinα)^4(cosα)^2=2(sinα)^2(sinα)^2(cosα)^2≤{[2(cosα)^2
(sinα)^2
(sinα)^2]/3}^3=(2/3)^3=8/27
(三次基本不等式)
2y^2≤8/27
y^2≤4/27
ymax=2√3/9,当且仅当2(cosα)^2=(sinα)^2,即tanα=√2,α=arctan√2时取到最大值