n=k时
左边是(k+1)(k+2).....(k+k) (1)
n=k+1时
左边是(k+2)(k+3)....(k+k)(k+k+1)(k+k+2) (2)
(2)/(1)=(2k+1)(2k+2)/(k+1)=2(k+1)
增乘就是多乘了多少,由上可得(1)*2(K+1)=(2)即多乘了2(k+1)
n=k+1
尾项=n+n=(k+1)+(k+1)=2(k+1)
如要用数学归纳法证明,参见我对另一题的回答:
http://zhidao.baidu.com/question/171602796.html