求函数连续性,可导性

2025-06-22 11:47:17
推荐回答(4个)
回答1:

连续性:只要求当x趋近于0时的值与f(0)的值是否一致即可。
limf(x)=lim(x^2*sin(1/x))=0 (这步是利用有界函数与无穷小的乘积为无穷小)
而f(0)=0
则函数在0处连续。
可导性:要证明可导则要知道在0处的左右导数是否相等,或者在该点处是否可导
求导数可以用定义法
f'(0)=lim((f(x)-f(0))/x)=lim((x^2*sin(1/x))/x)=lim(x*sin(1/x))=0 可知f(x)在x=0处有导数且导数存在。则在x=0处可导

回答2:

他们一个共同的问题是只逼近了一次·要分别从正无穷到0和负无穷到0做两次求极限而且都等于f(0)才证明它的连续行,这样才完整、

可导性是连续性的情况下在x=0点的地方有且只有一个斜率值就可导了。那么同样的想把f(x)求 一介导 在从两个无穷逼近0看这两个值是否相等就可以了

回答3:

你不能去掉sin,不能把他换成x。
sin是有界函数,x趋近于零所以0乘以有界函数得零

回答4:

因为敲上去的看起来不方便,建议先翻译成数学符号再钻研,后面附上了这道题所涉及的知识点。
1、当x趋近0时f(x)的极限=当x^2*sin(1/x)的极限=0=f(0),所以,函数在x=0处连续;
2、f(0)的导数=当x趋近0时(f(x)-f(0))/(x-0)时的极限=当x趋近0时(x^2*sin(1/x))/x=当x趋近0时x*sin(1/x)时的极限=0,所以,函数在x=0处可导。
知识点总结:1、求函数的连续性方法,即要看当x趋近于0时函数的极限与x=0处的函数值是否相等,若相等,则函数连续;
2、求函数的可导性方法,即要看f(0)的导数是否能求出来,若能求出来,则函数可导。
非常希望能够帮到你,呵呵。