w=(1+z)/(1-z) = (1+z)[(1-z)共轭] / |1-z|²设z=a+ib(1-z)共轭 = (1-a)+ib所以 (1+z)[(1-z)共轭] = [(1+a)+ib][(1-a)+ib] = (1-a²-b²) + 2bi = (1-|z|²) + 2bi所以Rew=(1-|z|²)/|1-z|²,Imw=2Imz/|1-z|²|w|=√(1+|z|²+2Rez)/|1-z|