数列{(2n-1)⼀2^n}的前n项和Sn

2025-04-15 05:09:55
推荐回答(4个)
回答1:

简单计算一下即可,答案如图所示

分析

回答2:

Sn=(2-1)/2^1+(2×2-1)/2^2+.+(2n-3)/2^(n-1)+(2n-1)/2^n①
2Sn=(2-1)+(2×2-1)/2^1+(2×3-1)/2^3+.+(2n-1)/2^(n-1)②
②减①=Sn=1+2(1/2^1+1/2^2+.+1/2^(n-1))-(2n-1)/2^n
=1+2(1-1/2^(n-1))-(2n-1)/2ⁿ
=3-4/2ⁿ-(2n-1)/2ⁿ
=3-(2n+3)/2ⁿ
综上,{an}的前n项和Sn=3-(2n+3)/2ⁿ.

回答3:

let
S = 1.(1/2)^0 +2.(1/2)^1+....+n.(1/2)^(n-1) (1)
(1/2)S = 1.(1/2)^1 +2.(1/2)^2+....+n.(1/2)^n (2)
(1)-(2)
(1/2)S = [1+1/2+..+1/2^(n-1) ] - n.(1/2)^n
= 2(1- (1/2)^n ) - n.(1/2)^n
S =4(1- (1/2)^n ) - 2n.(1/2)^n
an = (2n-1)/2^n
= n .(1/2)^(n-1) - 1/2^n
Sn = a1+a2+...+an
= S - (1 - 1/2^n)
=4(1- (1/2)^n ) - 2n.(1/2)^n -(1 - 1/2^n)
=3(1- (1/2)^n ) - 2n.(1/2)^n
=3 -(2n-3) .(1/2)^n

回答4:

Sn=-(2n+3)·(1/2)^n+3