用定义求0到π上cosx的定积分

2025-06-22 01:00:47
推荐回答(2个)
回答1:

先说明:答案显然为0

过程

先将定积分写成定义的形式:

积分定义

这里要用到一个公式

coskx的求和公式

最后将公式套入积分定义的那个式子,得到

最后过程

这个题就是这样,主要用到的是基础的积化和差和和差化积公式。

题主还可以尝试求它不同积分区间的值,希望有所帮助。

回答2:


∫(0到π/4)(cosx)^4=1/4+3π/32。

解答过程如下:

∫【0→π/4】(cosx)^4dx

=∫【0→π/4】[(cos2x+1)/2]²dx

=∫【0→π/4】(cos²2x+2cos2x+1)/4 dx

=1/4 ∫【0→π/4】[(cos4x+1)/2+2cos2x+1]dx

=1/4 ∫【0→π/4】[(cos4x)/2+2cos2x+3/2]dx

=【0→π/4】1/4 [(sin4x)/8+sin2x+3x/2]

=1/4[(sinπ)/8+sin(π/2)+3π/8-0]

=1/4+3π/32

扩展资料:

二倍角公式

sin2α=2sinαcosα

tan2α=2tanα/(1-tan^2(α))

cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

半角公式

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα

用积分公式:

1)∫0dx=c

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c

9)∫1/(sinx)^2dx=-cotx+c

10)∫1/√(1-x^2) dx=arcsinx+c

11)∫1/(1+x^2)dx=arctanx+c