初学C语言简单链表的问题,书上说p要指向head才能使用链表,我直接p=&a 发现结果和p=head一样,为什么

2025-06-23 01:58:34
推荐回答(3个)
回答1:

head 是链表规范的写法,p一般做为游动指针,你若这样写结果上是没错的,但是给阅读程序的人带来不便,你要知道,真正的程序代码不是这么几行的,所以基本就约定俗称了链表头有专门的head 表示,你把链表头赋给了p,若在程序的某个地方再次需要操作链表,就需要链表头,只要链表头才能把整个链表联系起来进行操作,而你此时的p已经到NULL了,链表头丢失,无法操作,且随便用字母声明的变量在专业的程序里是极不赞成的,因该使用有一定意义的单词或字母的组合同时兼顾大小写,这样的程序别人看了一目了然,且日后你看的时候也不至于忘了当初这个变量代表啥,所以head就表示为链表头了。
给你随便找了一个链表的程序,看了你就会知道head 的重要性。
#include
#include
#define NULL 0
#define LEN sizeof(struct student)

struct student
{
long num; /*学号*/
float score; /*分数,其他信息可以继续在下面增加字段*/
struct student *next; /*指向下一节点的指针*/
};

int n; /*节点总数*/

/*
==========================
功能:创建节点
返回:指向链表表头的指针
==========================
*/
struct student *Create()
{
struct student *head; /*头节点*/
struct student *p1=NULL; /*p1保存创建的新节点的地址*/
struct student *p2=NULL; /*p2保存原链表最后一个节点的地址*/

n = 0; /*创建前链表的节点总数为0:空链表*/
p1 = (struct student *)malloc(LEN); /*开辟一个新节点*/
p2 = p1; /*如果节点开辟成功,则p2先把它的指针保存下来以备后用*/

if (p1 == NULL) /*节点开辟不成功*/
{
printf("\nCann't create it, try it again in a moment!\n");
return NULL;
}
else /*节点开辟成功*/
{
head = NULL; /*开始head指向NULL*/

printf("Please input %d node -- num,score: ",n+1);
scanf("%ld,%f",&(p1->num),&(p1->score)); /*录入数据*/
}

while(p1->num != 0) /*只要学号不为0,就继续录入下一个节点*/
{
n += 1; /*节点总数增加1个*/

if (n==1) /*如果节点总数是1,则head指向刚创建的节点p1*/
{
head = p1;
/*
注意:
此时的p2就是p1,也就是p1->next指向NULL。
这样写目的是与下面else保持一致。
*/
p2->next = NULL;
}
else
{
p2->next = p1; /*指向上次下面刚开辟的节点*/
}

p2 = p1; /*把p1的地址给p2保留,然后p1去产生新节点*/

p1 = (struct student *)malloc(LEN);
printf("Please input %d node -- num,score: ",n+1);
scanf("%ld,%f",&(p1->num),&(p1->score));
}
p2->next = NULL; /*此句就是根据单向链表的最后一个节点要指向NULL*/

free(p1); /*释放p1。用malloc()、calloc()的变量都要free()*/
p1 = NULL; /*特别不要忘记把释放的变量清空置为NULL,否则就变成"野指针",即地址不确定的指针。*/
return head; /*返回创建链表的头指针*/
}

/*
===========================
功能:输出节点
返回: void
===========================
*/
void Print(struct student *head)
{
struct student *p;

printf("\nNow , These %d records are:\n",n);
p = head;
if(head != NULL) /*只要不是空链表,就输出链表中所有节点*/
{
printf("head is %o\n", head); /*输出头指针指向的地址*/
do
{
/*
输出相应的值:当前节点地址、各字段值、当前节点的下一节点地址。
这样输出便于读者形象看到一个单向链表在计算机中的存储结构,和我们
设计的图示是一模一样的。
*/
printf("%o %ld %5.1f %o\n", p, p->num, p->score, p->next);
p = p->next; /*移到下一个节点*/
}
while (p != NULL);
}
}

/*
==========================
功能:删除指定节点
(此例中是删除指定学号的节点)
返回:指向链表表头的指针
==========================
*/

/*
单向链表的删除图示:
---->[NULL]
head

图3:空链表

从图3可知,空链表显然不能删除

---->[1]---->[2]...---->[n]---->[NULL](原链表)
head 1->next 2->next n->next

---->[2]...---->[n]---->[NULL](删除后链表)
head 2->next n->next

图4:有N个节点的链表,删除第一个节点
结合原链表和删除后的链表,就很容易写出相应的代码。操作方法如下:
1、你要明白head就是第1个节点,head->next就是第2个节点;
2、删除后head指向第2个节点,就是让head=head->next,OK这样就行了。

---->[1]---->[2]---->[3]...---->[n]---->[NULL](原链表)
head 1->next 2->next 3->next n->next

---->[1]---->[3]...---->[n]---->[NULL](删除后链表)
head 1->next 3->next n->next

图5:有N个节点的链表,删除中间一个(这里图示删除第2个)
结合原链表和删除后的链表,就很容易写出相应的代码。操作方法如下:
1、你要明白head就是第1个节点,1->next就是第2个节点,2->next就是第3个节点;
2、删除后2,1指向第3个节点,就是让1->next=2->next。
*/
struct student *Del(struct student *head, long num)
{
struct student *p1; /*p1保存当前需要检查的节点的地址*/
struct student *p2; /*p2保存当前检查过的节点的地址*/

if (head == NULL) /*是空链表(结合图3理解)*/
{
printf("\nList is null!\n");
return head;
}

/*定位要删除的节点*/
p1 = head;
while (p1->num != num && p1->next != NULL) /*p1指向的节点不是所要查找的,并且它不是最后一个节点,就继续往下找*/
{
p2 = p1; /*保存当前节点的地址*/
p1 = p1->next; /*后移一个节点*/
}

if (num == p1->num) /*找到了。(结合图4、5理解)*/
{
if (p1 == head) /*如果要删除的节点是第一个节点*/
{
head = p1->next; /*头指针指向第一个节点的后一个节点,也就是第二个节点。这样第一个节点就不在链表中,即删除。*/
}
else /*如果是其它节点,则让原来指向当前节点的指针,指向它的下一个节点,完成删除*/
{
p2->next = p1->next;

}

free(p1); /*释放当前节点*/
p1 = NULL;
printf("\ndelete %ld success!\n",num);
n -= 1; /*节点总数减1个*/
}
else /*没有找到*/
{
printf("\n%ld not been found!\n",num);
}

return head;

回答2:

你改过之后运行过吗?我运行后结果是不一样的。

这是没改过的

这是改过后的结果

回答3:

p=head调用子函数